Symmetry Integrability and Geometry-Methods and Applications
期刊基本信息
期刊名称:Symmetry Integrability and Geometry-Methods and Applications
出版国家或地区:UKRAINE
是否OA:Yes
期刊ISSN:1815-0659
期刊官方网站:http://www.mathnet.ru/php/archive.phtml?jrnid=sigma&wshow=contents&option_lang=eng
通讯方式:NATL ACAD SCI UKRAINE, INST MATH, 3 TERESCHCHENKIV SKA ST, KYIV 4, UKRAINE, 01601
涉及的研究方向:物理-物理:数学物理
出版周期:Irregular
期刊数据表:
最新中科院JCR分区
|
大类(学科)
小类(学科)
JCR学科排名
物理
PHYSICS, MATHEMATICAL(物理学,数学) 4区
34/55
|
|||||||
最新的影响因子
|
0.733 | |||||||
最新公布的期刊年发文量 |
|
|||||||
总被引频次 | 1130 | |||||||
特征因子 | 0.004580 |
Symmetry Integrability and Geometry-Methods and Applications英文简介:
Symmetry, Integrability and Geometry: Methods and Applications (SIGMA)ScopeGeometrical methods in mathematical physicsLie theory and differential equationsClassical and quantum integrable systemsAlgebraic methods in dynamical systems and chaosExactly and quasi-exactly solvable modelsLie groups and algebras, representation theoryOrthogonal polynomials and special functionsIntegrable probability and stochastic processesQuantum algebras, quantum groups and their representationsSymplectic, Poisson and noncommutative geometryAlgebraic geometry and its applicationsQuantum field theories and string/gauge theoriesStatistical physics and condensed matter physicsQuantum gravity and cosmology
Symmetry Integrability and Geometry-Methods and Applications中文简介:
对称性、可积性与几何:方法与应用(SIGMA)范围数学物理中的几何方法李氏理论和微分方程经典和量子可积系统动力学系统和混沌中的代数方法精确和拟精确可解模型李群和代数,表示理论正交多项式和特殊函数可积概率和随机过程量子代数、量子群及其表示辛,泊松和非交换几何代数几何及其应用量子场理论和弦/规理论统计物理和凝聚态物理量子引力和宇宙学
Symmetry Integrability and Geometry-Methods and Applications在线问答:
SCI之家专业从事SCI期刊、SSCI期刊、EI源刊、SCOPUS期刊、论文咨询服务。SCI之家有来自美国、新加坡、马来西亚的专业英文母语化编审指导团队为您提供专业的英文论文母语润色服务。专注国际学术咨询服务,我们是认真的!