当前位置:SCI论文发表网>SCI期刊>Journal of Hyperbolic Differential Equations

Journal of Hyperbolic Differential Equations

SCI之家头像
创始人 研老师

期刊基本信息

期刊名称:Journal of Hyperbolic Differential Equations

出版国家或地区:UNITED STATES

是否OA:No

期刊ISSN:0219-8916

期刊官方网站:http://www.worldscientific.com/worldscinet/jhde

期刊投稿网址:http://www.worldscientific.com/page/jhde/submission-guidelines

通讯方式:WORLD SCIENTIFIC PUBL CO PTE LTD, 5 TOH TUCK LINK, SINGAPORE, SINGAPORE, 596224

涉及的研究方向:数学-物理:数学物理

出版周期:Quarterly

期刊数据表:

最新中科院JCR分区
大类(学科)
小类(学科)
JCR学科排名
物理
MATHEMATICS, APPLIED(数学,应用) 4区 PHYSICS, MATHEMATICAL(物理学,数学) 4区
185/252 51/55
最新的影响因子
0.833
最新公布的期刊年发文量
年度总发文量 年度论文发表量 年度综述发表量
24 24 0
总被引频次 360
特征因子 0.001780

Journal of Hyperbolic Differential Equations英文简介:

This journal publishes original research papers on nonlinear hyperbolic problems and related topics, of mathematical and/or physical interest. Specifically, it invites papers on the theory and numerical analysis of hyperbolic conservation laws and of hyperbolic partial differential equations arising in mathematical physics. The Journal welcomes contributions in:Theory of nonlinear hyperbolic systems of conservation laws, addressing the issues of well-posedness and qualitative behavior of solutions, in one or several space dimensions.Hyperbolic differential equations of mathematical physics, such as the Einstein equations of general relativity, Dirac equations, Maxwell equations, relativistic fluid models, etc.Lorentzian geometry, particularly global geometric and causal theoretic aspects of spacetimes satisfying the Einstein equations.Nonlinear hyperbolic systems arising in continuum physics such as: hyperbolic models of fluid dynamics, mixed models of transonic flows, etc.General problems that are dominated (but not exclusively driven) by finite speed phenomena, such as dissipative and dispersive perturbations of hyperbolic systems, and models from statistical mechanics and other probabilistic models relevant to the derivation of fluid dynamical equations.Convergence analysis of numerical methods for hyperbolic equations: finite difference schemes, finite volumes schemes, etc.The Journal aims to provide a forum for the community of researchers who are currently working in the very active area of nonlinear hyperbolic problems, and will also serve as a source of information for the users of such research.There is no a priori limitation on the length of submitted manuscripts, and even long papers may be published.

Journal of Hyperbolic Differential Equations中文简介:

该期刊发表关于非线性双曲线问题和相关主题的原始研究论文,数学和/或物理兴趣。具体而言,它邀请了关于双曲守恒定律和数学物理中出现的双曲偏微分方程的理论和数值分析的论文。期刊欢迎以下方面的贡献:非线性双曲守恒定律系统理论,解决了一个或多个空间维度中解的适定性和定性行为问题。数学物理的双曲微分方程,如广义相对论的爱因斯坦方程,狄拉克方程,麦克斯韦方程,相对论流体模型等。洛伦兹几何,特别是满足爱因斯坦方程的时空的全局几何和因果理论方面。连续体物理中出现的非线性双曲系统,如:流体动力学的双曲线模型,跨音速流的混合模型等。由有限速度现象主导(但不是唯一驱动)的一般问题,例如双曲线系统的耗散和色散扰动,以及来自统计力学和与流体动力学方程的推导相关的其他概率模型的模型。双曲型方程数值方法的收敛性分析:有限差分格式,有限体积格式等。该期刊旨在为目前正在非常活跃的非线性双曲线问题领域工作的研究人员提供一个论坛,并且还将作为此类研究用户的信息来源。提交稿件的长度没有先验限制,甚至可能会发表长篇论文。

Journal of Hyperbolic Differential Equations在线问答:

© http://www.scizj.com/sci/18190.html
SCI之家介绍

SCI之家专业从事SCI期刊、SSCI期刊、EI源刊、SCOPUS期刊、论文咨询服务。SCI之家有来自美国、新加坡、马来西亚的专业英文母语化编审指导团队为您提供专业的英文论文母语润色服务。专注国际学术咨询服务,我们是认真的!

投稿咨询

SCOPUS知识>
关注:601+
2024-10-28 16:10:34
关注:723+
2024-04-22 17:04:35
关注:706+
2024-02-19 17:02:15
关注:652+
2024-01-15 17:01:08
关注:364+
2024-01-12 17:01:11
关注:402+
2023-12-28 17:12:03
最新SCI问答 >
关注:687+
2024-11-20 18:11:41
关注:546+
2024-11-18 18:11:35
关注:505+
2024-11-16 15:11:53
热门SCI问答 >
关注:927+
2024-11-18 18:11:32
关注:869+
2024-11-19 18:11:11
关注:762+
2024-11-14 18:11:36
EI期刊百问 >
关注:636+
2024-10-19 16:10:37
关注:475+
2024-09-14 11:09:45
关注:749+
2024-09-10 15:09:57
关注:374+
2024-07-23 15:07:04
关注:552+
2024-07-19 16:07:20
关注:490+
2024-07-17 11:07:46